
Appendix AA

The Gradient and Laplacian Operators

THE GRADIENT OPERATOR

The gradient of a function is a vector that points in the direction in which the function changes most rapidly and has a
magnitude equal to the rate of change of the function in that direction. It is the natural three-dimensional generalization of
the derivative with respect to a single variable. In Cartesian coordinates, the gradient of the function ψ can be written
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where i, j, and k are unit vectors pointing along the x, y, and z axes, respectively.
In spherical coordinates, which are defined in Eq. (4.3), the gradient of the function ψ is
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where r̂, θ̂ , and φ̂ are unit vectors pointing in the direction in which r moves when r, θ , and φ increase. We note that the
factor r∂θ that occurs in the denominator of the second term is the distance the point at rwouldmove if the angle θ increased
by an amount ∂θ with r and φ held fixed, while the factor r sin θ∂φ which occurs in the denominator of the third term is the
distance the point at r would move if φ increased by ∂φ with r and θ held fixed. Each of the terms of the gradient operator
gives the rate of change of the function on which the gradient operator acts with respect to the displacement associated with
a particular spherical coordinate.

The equation defining the gradient of a function of any orthogonal set of coordinates is similar to Eq. (AA.2) defining
the gradient of a function for spherical coordinates. For a system of orthogonal coordinates (q1, q2, q3), a change of the
first coordinate q1 by an amount dq1 causes a spatial point to move a distance ds1 = h1 dq1. Similarly, changes in the
second coordinate by dq2 and a change of the third coordinates by dq3 causes the point to move distances ds2 = h2 dq2
and ds3 = h3 dq3, respectively. The weights (h1, h2, h3) determines how far the point moves if the corresponding coordinate
changes. The gradient of a function ψ in a system with coordinate (q1, q2, q3) is defined by the equation

∇ψ = ê1
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Here as for the spherical coordinates (r, θ ,φ) the quantities h1∂q1, h2∂q2, and h3∂q3 occurring in the denominators of the
above equation give the distances a point will move if the three coordinates change by the amounts ∂q1, ∂q2, and ∂q3,
respectively. The three weight factors for spherical coordinates are

hr = 1, hθ = r, hφ = r sin θ . (AA.4)

THE DIVERGENCE OF A VECTOR

To find the divergence of a vector A, we consider the infinitesimal volume dV = dq1dq2dq3. The volume is bounded by
surfaces for which the first coordinate has the values, q1 and q1 + dq1, the second coordinate has the values, q2 and q2 + dq2,
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and the third coordinate has the values, q3 and q3 + dq3. Gauss’s theorem for the vector field A(q1, q2, q3) is∫
∇ · A dV =

∫
A · dS.

The integral of the out-going normal of A over the two surfaces for which the first coordinate has the values q1 and
q1 + dq1 is

(A1ds2ds3)q1+dq1 − (A1ds2ds3)q1 = ∂(A1ds2ds3)

∂q1
dq1.

Using the fact that the displacements, ds1, ds2, and ds3, are equal to h1dq1, h2dq2, and h3dq3, respectively, the above equation
can be written
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h1h2h3

∂(h2h3A1)

∂q1
dV.

Analogous expressions hold for the other two sets of surfaces. According to Gauss’s theorem, the sum of these three terms
is equal to A · AdV. Hence the divergence of A is given by the equation
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THE LAPLACIAN OF A FUNCTION

The Laplacian of a scalar function ψ is the divergence of the gradient of the function. We can write

∇2ψ = ∇ · ∇ψ .
Using Eq. (AA.5) for the divergence of a vector and Eq. (AA.3) for the gradient of a function, the above equation can be
written
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For spherical polar coordinates, the three weight factors are given by Eq. (AA.4) and the equation for the Laplacian
operator in spherical coordinates is
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THE ANGULAR MOMENTUM OPERATORS

The operator associated with the angular momentum of a particle can be obtained by writing the angular momentum in
terms of the momentum

l = r × p

and then making the replacement p → −i∇ to obtain

l = −i�r × ∇. (AA.8)

The angular momentum operator in spherical coordinates can be obtained by using Eq. (AA.2) and the relations

r̂ × θ̂ = φ̂ and r̂ × φ̂ = −θ̂
to give

l = −i�

(
φ̂
∂

∂θ
− θ̂

1

sin θ

∂

∂φ

)
.



The Gradient and Laplacian Operators Appendix| AA e3

The operator corresponding to the z-component of the angular momentum can then be obtained by taking the dot product
of this last expression with the unit vector k̂ pointing along the z-axis to obtain

lz = −i�
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. (AA.9)

The square of the angular momentum operator is related to the second term on the right-hand side of Eq. (AA.7) by the
equation
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Using Eqs. (AA.7) and (AA.10), the Lapalcian operator in spherical coordinates can be written simply
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The angular part of the Laplacian operator in spherical coordinates is equal to l2/�2r2.




